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1. Present an overview of the research on Text-Editing models

a. Focus on general themes rather than individual models

2. Provide practical guidelines for when and how to apply Text-Editing models

3. Present methods for speeding up LLM inference

Goals
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1. What are text-editing models?

[15 min; Eric]

2. Model design

[35 min; Eric, Jonathan]

○ Main components of editing 

models; obtaining target edits

3. Applications

[35 min; Yue]

○ GEC, Style Transfer, Utterance 

Rewriting, Simplification

Outline
4. Controllable generation

[15 min; Yue]

○ Hallucinations, dataset 

generation, etc.

5. Multilingual text editing

[10 min; Eric]

6. Faster (Large) Language Models 

[30min; Jonathan]

7. Recommendations and future 

directions [5 min; Eric]

11:25-11:30 Break
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1. What Are 
Text-Editing Models?

Presenter: Eric
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Text-editing models generate natural 
language by applying edit operations to 

the input text to produce 
the target text
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Motivation

Turing was born in 1912 . Turing died in 1954 .

KEEP KEEP KEEP KEEP KEEP DEL INS PRON KEEP KEEP KEEP KEEP

Turing was born in 1912 and he died in 1954 .

● Most NLP tasks besides MT are monolingual
● Sources and targets often overlap

○ Generating the target from scratch is wasteful
○ Target can be reconstructed from the source via basic 

ops like KEEP, DELETE, INSERT
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Poll:
How many of you have used

 a text-editing model?
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Let’s review some Natural Language Generation tasks

Application Example
Source (S) and target (T) text

Use Text 
Editing?

Machine 
translation

S: Turing studied at King's College, where he was awarded first-class honours in mathematics.
T: Turing studierte am King's College, wo er erstklassige Auszeichnungen in Mathematik erhielt.
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Let’s review some Natural Language Generation tasks

Application Example
Source (S) and target (T) text

Use Text 
Editing?

Machine 
translation

S: Turing studied at King's College, where he was awarded first-class honours in mathematics.
T: Turing studierte am King's College, wo er erstklassige Auszeichnungen in Mathematik erhielt.
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Let’s review some Natural Language Generation tasks

Application Example
Source (S) and target (T) text

Use Text 
Editing?

Machine 
translation

S: Turing studied at King's College, where he was awarded first-class honours in mathematics.
T: Turing studierte am King's College, wo er erstklassige Auszeichnungen in Mathematik erhielt.

Summarization S: Court members Deborah Poritz and Peter Verniero didn’t participate in the Nelson case.
T: Two court members didn’t participate in the case.

Sentence 
fusion

S: Turing was born in 1912. Turing died in 1954.
T: Turing was born in 1912 and he died in 1954.
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Let’s review some Natural Language Generation tasks

Application Example
Source (S) and target (T) text

Use Text 
Editing?

Machine 
translation

S: Turing studied at King's College, where he was awarded first-class honours in mathematics.
T: Turing studierte am King's College, wo er erstklassige Auszeichnungen in Mathematik erhielt.

Summarization S: Court members Deborah Poritz and Peter Verniero didn’t participate in the Nelson case.
T: Two court members didn’t participate in the case.

Sentence 
fusion

S: Turing was born in 1912. Turing died in 1954.
T: Turing was born in 1912 and he died in 1954.

Grammar 
correction

S: New Zealand have a cool weather.
T: New Zealand has cool weather.
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● Grammatical Error Correction (GEC)

● Text Simplification

● Sentence fusion

● Style transfer

● Sentence splitting & rephrasing & fusion

● Text normalization

● Text summarization

● Automatic post-editing for machine translation 

Applications often studied in the Text-Editing literature
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NLP tasks map

Classification Sequence 
labeling

Generation

Task
● Single label 
● binary, multi-class

Model
● Encoder

Task
● New sequence
● Large softmax

Model
● Encoder + decoder

Task
● Per token label
● Small softmax

Model
● Encoder
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Generation is all you need?

Classification Sequence 
labeling

Generation

● Autoregressive LMs (Generation models) can also 
generate classification labels and sequence labels
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LLMs like T5 and GPT excel across various NLP tasks

[Raffel et al, 2020]
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Where does Text Editing fit?

Classification Sequence 
labeling GenerationText 

Editing

Task
● Single label (binary, 

multi-class)
Model

● Encoder + softmax
Latency

● Fast (feed-forward)

Task
● New sequence
● Large softmax

Model
● Encoder + decoder

Latency
● Slow (autoregressive)

Task
● Per token label
● Small softmax

Model
● Encoder + softmax

Latency
● Fast (feed-forward)

Task
● Tagging + Insertion
● small/large softmax

Model
● Encoder + decoder

Latency
● Fast
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Text-Editing models leverage inductive bias (high 
overlap) to:

1. Make inference faster without compromising the 
quality

2. Simplify the task (smaller output space) to make 
models more data efficient
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Data efficient Text Editing models need less training data.

Latency Can be >10x faster inference.

Faithfulness Constraining decoders in seq2seq is an active area 
of research

Text Editing Advantages

Control We can control the word a model can add / remove.
Can incorporate external knowledge (e.g., pronoun).
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● IF you:

(1) only care about quality / generalization,

(2) don’t have latency, cost, or infra constraints, and

(3) don’t need fine-tuning,

the answer is: maybe not

● But that’s a big IF!

● LLMs and Text Editing can nicely complement each other via

distillation [Hinton et al. 2015]

Are Text-Editing models relevant in the LLM era?
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Distilling LLMs into Text-Editing models

LLM

1. Take a sample of model inputs
2. Generate target outputs with an LLM
3. Train a Text-Editing model on this data and serve it

→ may allow combining the quality of LLM and the advantages of Text Editing

Text-Editing
model

Distillation
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Questions?
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