2. Model Design

Presenter: Eric, Jonathan

2-1. Example model: LaserTagger
(2019)

Malmi, Krause, Rothe, Mirylenka, Severyn. Encode, Tag, Realize: High-Precision Text Editing. EMNLP 2019 (pdf)

https://arxiv.org/pdf/1909.01187.pdf

High-Overlap Example: Sentence Fusion

Given two or more answers, fuse them into a

single coherent answer.

- Example -
Query: [einstein birth and death]
Answers:
e Albert Einstein was born in 1879
e Albert Einstein died in New Jersey

e Albert Einstein died at the age of 76.

Fusion: Albert Einstein was born in 1879 and he died in New
Jersey at the age of 76.

28

Sentence Fusion via Text Editing

Observation: High overlap between the answers and the fusions.
Fusion requires mainly:
e Deleting repeated phrases

e Adding short glue phrases

Solution: Predict edit operations instead of generating from scratch.

29

LaserTagger

Turing was

born in 1912 : Turing died in 1954

Sofemalf |

KEEP KEEP KEEP KEEP KEEp REPLACE pponnp KEEP KEEP KEEP KEEP

Turing was

(and he)

Q[Realize]a

born n 1912 and he died n 1954

Malmi, Krause, Rothe, Mirylenka, Severyn. Encode, Tag, Realize: High-Precision Text Editing. EMNLP 2019 (pdf)

30

https://arxiv.org/pdf/1909.01187.pdf

LaserTagger: Key Ingredients

e Convert training target texts into target tag sequences.
o Tag = Base tag {KEEP, DELETE} + added phrase
o Additionally: SWAP tag to reverse sentence order

e Phrase vocabulary: Set of phrases the model can add.
o Counters hallucination
o Optimized to cover as many training examples as
possible

e Tagging Model: BERT (+ 1-layer Transformer decoder)

Transformer
decoder
1 layer

Transformer
encoder
12 layers
(BERT)

Figure 3: The architecture of LASERTAGGERaR.

Source: Malmi et al. 2019 (pdf).

31

https://arxiv.org/pdf/1909.01187

LaserTagger’s Limitations

1. Realized text is sometimes unnatural since we only pretrain the
encoder.

2. Limited phrase vocabulary can be too restrictive.

3. Reordering words is difficult.

32

2-2. Model landscape

Anatomy of a text-editing model

e What edit operations to use?

{ Encoder } e Tagging architecture?
e Auto-regressive vs. feed-forward?

[Pointer] e How to reorder words?

[Decoder } e How to insert words / phrases?

34

Anatomy of a text-editing model

e What edit operations to use?

- e Auto-regressive vs. feed-forward?
e Tagging architecture?

35

2-3. Edit-operation types

Basic Edit-Operation Types

1. KEEP: Keeps the current token
2. DELETE: Deletes the current token
3. REPLACE: Replaces the current token

a. REPLACE_X: Replace with a specific token/phrase X
(e.g. LaserTagger, GECToR)

b. REPLACE: Replace with a placeholder and use a separate
insertion component to fill the blank (e.g. EitNTS, Felix, LEWIS)

4. APPEND / PREPEND: Inserts new token(s) next to the current token

37

https://aclanthology.org/D19-1510/
https://aclanthology.org/2020.bea-1.16/
https://aclanthology.org/P19-1331/
https://aclanthology.org/2020.findings-emnlp.111/
https://aclanthology.org/2020.emnlp-main.699/

REPLACE_X, APPEND_X, PREPEND X

e Separate edit operation for each insertion x € X
where X is a predefined set of possible insertions
o REPLACE_the, REPLACE_a, etc.

e Pros

o Counters hallucinations (more on this later)
e (Cons
o X can become very large when having to do
multi-word insertions
o Hard to leverage pre-trained LMs to

determine a good insertion

DfWiki WikiSplit AS GEC
, s s mas) , .
and i N P
however, _, .. {::::)_he the the
, but sl ik a a
he the & to
because and and in
, ,although was is of
but is in on
,and " " at
although ..{::::)_she r's for
his i) it is with have
;. while a for is
dik . {::::)_they of was
, _which ..{::::)_however n’t and
she he an that

Table 1: The 15 most frequently added phrases in the
datasets studied in this work, in order of decreasing fre-
quency. (::::) marks a sentence boundary. “AS”/“GEC”
is short for Abstractive Summarization/Grammatical
Error Correction.

Source: LaserTagger paper (Malmi et al. 2019). 38

https://arxiv.org/pdf/1909.01187

Other Edit-Operation Types

e SWAP: Swap the order of this and the previous sentence

Source: Dylan won Nobel prize . Dylan is an American musician .
Tags: DELETE KEEP KEEP KEEP SWAP KEEP ¢™MpEIETE KEEP KEEP KEEpP ¢MMADEIETE
Realization: Dylan , an American musician , won Nobel prize .

e PRONOMINALIZE: Replace this entity with a pronoun (look up gender

from a knowledge base)
e NOUN_NUMBER_SINGULAR: Convert noun to singular form

a. Other grammar-related edit operations discussed in the

Applications section 39

2-4. Tagging architecture +
auto-regressiveness

Types of Models

Two major types of models used for tagging

Autoregressive (AR) Non-Autoregressive (NAR)

e Condition on previous e Predict simultaneously
predictions e Feedforward NN

e Seq2Seq e More prone to errors

e Slow* ®

Fast*

41

Case study: LaserTagger

LaserTagger supports AR and NAR version allowing for a direct

comparisons

e Across 4 tasks AR outperforms NAR

o Up to 7% difference but as little as 1%
e At a40xincrease in latency (on GPU)

o 13ms to 535ms

e Trade off between speed and performance

42

Non-AutoRegressive

Sequence labeling task

1. Encode source
2. For each token predict a label

a. Maximize gold tag probability in training

P(y|x) HP (yi|x)

b. Argmax in prediction

Sequence
labeling

43

Non-AutoRegressive

1. Encode source sentence
a. Pre-trained NAR models
b. BERT: Felix, LaserTagger, GECToR
c. XLNet: GECToR
2. Predict the tags
a. Single layer Feedforward
b. Output size: 2 - 1000 tags

c. Each hidden state gets a single tag

Difficult to generate arbitrary outputs

Transformer
decoder
1 layer

Transformer
encoder <
12 layers
(BERT)

Source: Malmi et al. 2019 (pdf).

44

https://arxiv.org/pdf/1909.01187

Non-AutoRegressive Agreement

NAR runs the risk of the edits not agreeing with each other

Source: "We have

NAR Prediction: "We have

"We have
"We have

AR Prediction:

an apples”

some apple”

an apple”
some apples”

NAR don't condition on past

edits
Agreement issues:

e Direction
e Grammar

e Subwords

NAR don't apply layers

multiple times

45

Auto-Regressive

e Encode source IIIIIIIIII
e Decode edit-by-edit
1

o Condition on previously decoded edit
[Generation]

e RNN/Transformer

o Pre-trained AR

o T5:EdiT5 ly|
o BART: LEWIS P(ylx) = HP Yily<i,T)

lterative Refinement

e Apply the model to its own output
o Each iteration increases
performance but adds latency
e Commonly used for GEC
e Can be used with any type of model

o GECTOR, PIE, Seq2Edits

Iteration # P R Fos #corr.
Iteration1 723 38.6 61.5 787
Iteration2 73.7 41.1 63.6 934
Iteration3 740 41.5 64.0 956
Iteration4 739 415 64.0 958

Table 4: Cumulative number of corrections and corre-
sponding scores on CoNLL-2014 (test) w.r.t. number
of iterations for our best single model.

GECToR - Grammatical Error Correction: Tag, Not Rewrite (Omelianchuk et al., BEA 2020)

47

https://aclanthology.org/2020.bea-1.16

Anatomy of a text-editing model

[Pointer] e How to reorder words?

48

Reordering

&
Most text-editing apply their &= |s éi
Last year, I read the book ?} E} . ? 51 .
models left-to-right that is authored by Jane. ~— & &
[Original sentence] B =
Reordering allows us to model
e Large syntactic changes
E3
e Local changes Jane wrote a book.
I read it last year. CEE- g =
Without the need to delete then = =0
= @ M
insert g

AutoRegressive Reordering

Implemented using pointer network

e When decoding use a cross-attention

e The source token with the highest
attention is copied to the target

e Can copy the same source token

multiple times

Source: Pointer networks paper (Vinyals et al., 2015).

50

https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf

Non-AutoRegressive Reordering

e Self-attention pointer network which are daisy chained

o Attention between encoder hidden states

o Felix & EdiT5

e Can only copy each source token once

(

\

MASK

| I—

[CLS] There are 3 layers in
DEL DEL KEEP KEEP DEL

Source: Felix paper (Mallinson et al. 2020).

~Lf_\\

the walls of the heart
DEL DEL DEL KEEP INS

o1

Anatomy of a text-editing model

[Decoder } e How to insert words / phrases?

52

Separate Insertion Component

Tagger predicts where to insert;

a separate component what to insert

Different insertion architectures
o RNN (EditNTS)
o BERT MLM (Felix, Masker)

o Transformer decoder (Seq2Edits, EdiT5,
LEWIS)

Output: The user query is very long

I_) user query Iong po_sO The pc;_sz ig very </_s>
Pointer [Decoder]

D K K K <;> po:s0 TI:‘le p:os2 i:s vézry
;Encdfder ?

A Iohg user quéry

Source: EdiT5 paper (Mallinson et al. 2022).

93

Felix

Theheart has 3 Iayers

® |dea 1: Separate insertion from tagging
O Leverage pretrained BERT

® |dea 2: Predict word order using a pointer
network i N

1 .
L e,

....—:i""“ ren, e

§ DDKKDDD D K |

TAGGER

0‘0(5&% \Q e\e 44444 & 0 6’
&‘0"} & NN

Source: Felix paper (Mallinson et al. 2020).

Insertion

e The output of the tagging model is the reordered input text
with deleted words and MASK tokens

e The insertion model predict the content of MASK tokens

e Very similar to the pretraining objective of BERT

Source: The consist of layers
Tags: DEL KEEP KEEP'"°- KEEP
Insertion input: [R] The [/R] consist of MASK MASK layers
Prediction: consist of many different layers

Source: Felix paper (Mallinson et al. 2020).

EJITS

Output: The user query is very long

..................

P » » y

D user query long posO The pdsz is very </s>

Pointer [

Decoder

]

D K K K

[f Encoder

A Iohg user quéry

Source: EdiT5 paper (Mallinson et al. 2022).

}

<é> pdsO The psz i-s véry

Idea 1: Join insertion and

tagging
o Leverage pretrained TS
models

Idea 2: Use autoregressive
decoding on the small number
of inserted tokens

Decoder first predicts the
location of the new text then
decodes new tokens

Seq2Edits: A model that can rewrite and explain

He still dream to become a super hero.

He still | Copy
He still dreams { Replace dream with dreams: Subject-verb-agreement]
He still dreams of ' Replace to with of: Incorrect particle]

He still dreams of becoming | Replace become with becoming: Verb form |

He still dreams of becoming a super hero. Copy J

Contains 3 sub-models for
predicting tags, span-end
positions and replacement
tokens

The model is able to provide
explanations for each edit
operation

By avoiding unnecessary
copying of input spans, it is
up to 5 times faster than a
regular seq2seq model

Overview of Text-Editing Models

Method Non-au‘tore- Pre-trained Regrde- Unguper— Language- Application(s)
gressive decoder ring vised agnostic

EdiT5 (Mallinson et al., 2022)) v v Ve multiple
EditNTS (Dong et al., 2019) v Simplification
Felix (Mallinson et al., 2020) v v v v multiple
GECToR (Omelianchuk et al., 2020) v W) GEC
LaserTagger (Malmi et al., 2019) v v multiple
LevT (Guetal., 2019)) v v multiple
LEWIS (Reid and Zhong, 2021) v v v Style Transfer
Masker (Malmi et al., 2020) v v v v multiple
PIE (Awasthi et al., 2019) v v GEC
Seq2Edits (Stahlberg and Kumar, 2020)) multiple
SL (Alva-Manchego et al., 2017) v v v Simplification

o8

2-5. Converting target
texts to target edits

Edit types

There are multiple different ways that one sentence can be edited into another:
e Edit operation types (insert, delete, replace, append, prepend, reorder...)
e Token-level vs. span-level edits
e Tagged vs. untagged edits

e Alignment algorithm

60

Example

Source: i like films when i was younger i watched on TV

Target: i like films i watched on television when i was younger
e We could delete everything and then use insert everything
e is TV adelete and insert after on? or singe a replace
e Do we want to reorder or delete everything after i like films?

e What should the i align to?

61

Questions?

62

