2. Model Design Presenter: Eric, Jonathan

2-1. Example model: LaserTagger (2019)

High-Overlap Example: Sentence Fusion

Given two or more answers, fuse them into a

single coherent answer.

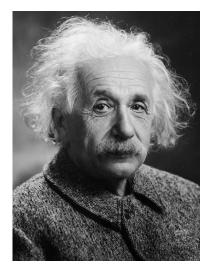
-- Example --

Query: [einstein birth and death]

Answers:

- Albert Einstein was born in 1879.
- Albert Einstein died in New Jersey.
- Albert Einstein died at the age of 76.

Fusion: Albert Einstein was born in 1879 and he died in New Jersey at the age of 76.



Sentence Fusion via Text Editing

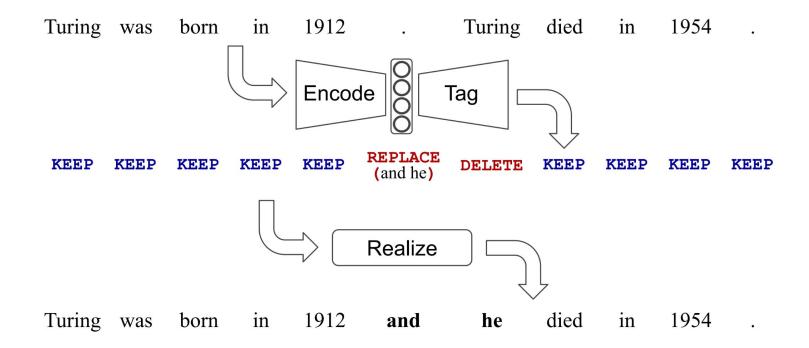
Observation: High overlap between the answers and the fusions.

Fusion requires mainly:

- Deleting repeated phrases
- Adding short glue phrases

Solution: Predict edit operations instead of generating from scratch.

LaserTagger



Malmi, Krause, Rothe, Mirylenka, Severyn. Encode, Tag, Realize: High-Precision Text Editing. EMNLP 2019 (pdf)

LaserTagger: Key Ingredients

- **Convert** training target texts into **target tag** sequences.
 - Tag = Base tag {KEEP, DELETE} + added phrase
 - Additionally: SWAP tag to reverse sentence order
- Phrase vocabulary: Set of phrases the model can add.
 - Counters hallucination
 - Optimized to cover as many training examples as possible
- **Tagging Model:** BERT (+ 1-layer Transformer decoder)

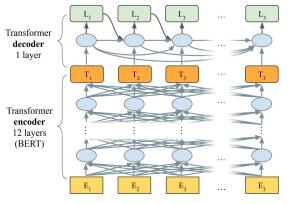


Figure 3: The architecture of LASERTAGGERAR.

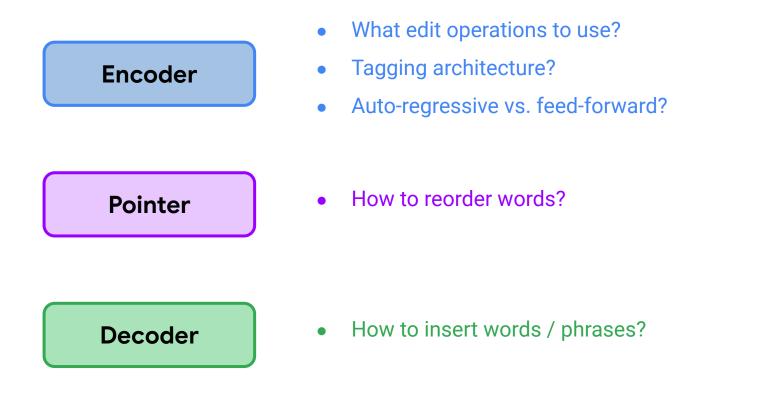
Source: Malmi et al. 2019 (pdf).

LaserTagger's Limitations

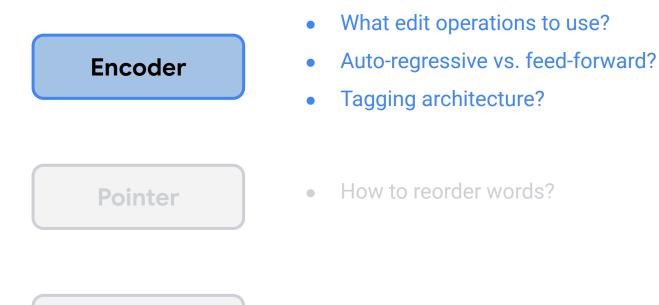
- 1. Realized text is sometimes unnatural since we only pretrain the encoder.
- 2. Limited phrase vocabulary can be too restrictive.
- 3. Reordering words is difficult.

2-2. Model landscape

Anatomy of a text-editing model



Anatomy of a text-editing model



Decoder

• How to insert words / phrases?

2-3. Edit-operation types

Basic Edit-Operation Types

- 1. KEEP: Keeps the current token
- 2. **DELETE**: Deletes the current token
- 3. **REPLACE**: Replaces the current token
 - a. REPLACE_X: Replace with a specific token/phrase X
 (e.g. LaserTagger, GECToR)
 - b. REPLACE: Replace with a placeholder and use a separate insertion component to fill the blank (e.g. <u>EditNTS</u>, <u>Felix</u>, <u>LEWIS</u>)
- 4. APPEND / PREPEND: Inserts new token(s) next to the current token

REPLACE_X, APPEND_X, PREPEND_X

- Separate edit operation for each insertion x ∈ X where X is a predefined set of possible insertions
 - REPLACE_the, REPLACE_a, etc.
- Pros
 - Counters hallucinations (more on this later)
- Cons
 - X can become very large when having to do multi-word insertions
 - Hard to leverage pre-trained LMs to determine a good insertion

DfWiki	WikiSplit	AS	GEC	
	<:::>	,	,	
and	,			
however_,	$\langle : : : : angle$ _he	the	the	
,_but	(::::)_it	а	а	
he	the	&	to	
because	and	and	in	
,_although	was	is	of	
but	is	in	on	
, and	"		at	
although	$. _\langle :::: \rangle$ _she	′ s	for	
his	(::::)_it_is	with	have	
,_while	a	for	is	
it	(::::)_they	of	was	
,_which	(::::)_however	n't	and	
she	he	an	that	

Table 1: The 15 most frequently added phrases in the datasets studied in this work, in order of decreasing frequency. $\langle :::: \rangle$ marks a sentence boundary. "AS"/"GEC" is short for Abstractive Summarization/Grammatical Error Correction.

Other Edit-Operation Types

• SWAP: Swap the order of this and the previous sentence

Source: Dylan won Nobel prize Dylan is American musician an . KEEP *comma* DELETE KEEP *comma*DELETE Tags: DELETE KEEP KEEP KEEP KEEP KEEP SWAP Realization: Dylan, an American musician, won Nobel prize.

- **PRONOMINALIZE**: Replace this entity with a pronoun (look up gender from a knowledge base)
- NOUN_NUMBER_SINGULAR: Convert noun to singular form
 - a. Other grammar-related edit operations discussed in the Applications section

2-4. Tagging architecture + auto-regressiveness

Types of Models

Two major types of models used for tagging

Autoregressive (AR)

- Condition on previous predictions
- Seq2Seq
- Slow*

Non-Autoregressive (NAR)

- Predict simultaneously
- Feedforward NN
- More prone to errors
- Fast*

Case study: LaserTagger

LaserTagger supports **AR** and **NAR** version allowing for a direct comparisons

- Across 4 tasks AR outperforms NAR
 - Up to **7%** difference but as little as **1%**
- At a **40x** increase in latency (on GPU)
 - **13ms to 535ms**
- Trade off between **speed** and **performance**

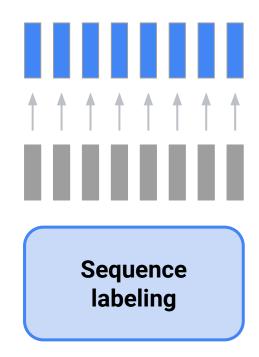
Non-AutoRegressive

Sequence labeling task

- 1. Encode source
- 2. For each token **predict a label**
 - a. Maximize gold tag probability in training

$$P(y|x) = \prod_{i}^{|y|} P(y_i|x)$$

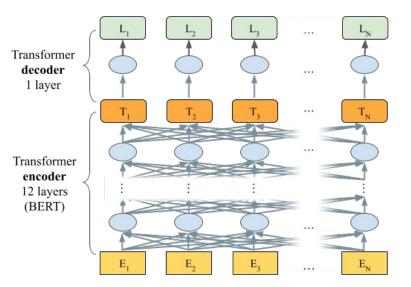
b. Argmax in prediction



Non-AutoRegressive

- 1. Encode source sentence
 - a. Pre-trained NAR models
 - b. BERT: Felix, LaserTagger, GECToR
 - c. XLNet : GECToR
- 2. Predict the tags
 - a. Single layer Feedforward
 - b. Output size: 2 1000 tags
 - c. Each hidden state gets a single tag

Difficult to generate arbitrary outputs



Source: Malmi et al. 2019 (pdf).

Non-AutoRegressive Agreement

NAR runs the risk of the edits not agreeing with each other

Source:

"We have an apples"

NAR Prediction: "We have some apple"

AR Prediction: "We have an apple" "We have some apples" NAR don't condition on past edits

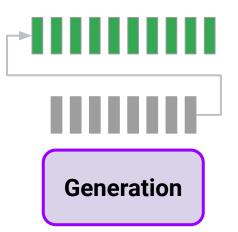
Agreement issues:

- Direction
- Grammar
- Subwords

NAR don't apply layers multiple times

Auto-Regressive

- Encode source
- Decode edit-by-edit
 - Condition on previously decoded edit
- RNN/Transformer
 - Pre-trained AR
 - **T5**: EdiT5
 - BART: LEWIS



$$P(y|x) = \prod_{i}^{|y|} P(y_i|y_{$$

Iterative Refinement

- Apply the model to its **own output**
 - Each iteration increases

performance but adds latency

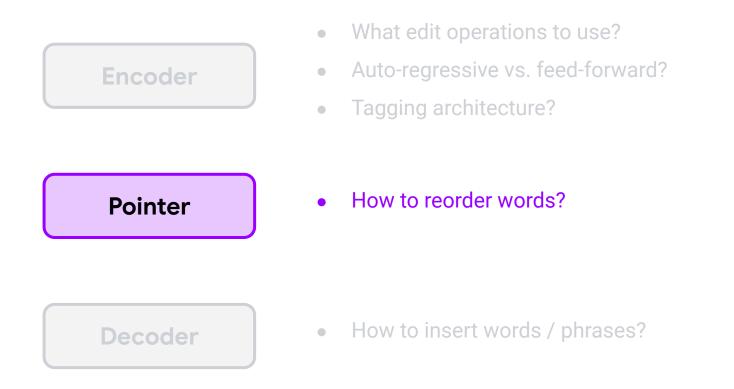
- Commonly used for GEC
- Can be used with any type of model
 - GECToR, PIE, Seq2Edits

Iteration #	Р	R	$\mathbf{F}_{0.5}$	# corr.
Iteration 1	72.3	38.6	61.5	787
Iteration 2	73.7	41.1	63.6	934
Iteration 3	74.0	41.5	64.0	956
Iteration 4	73.9	41.5	64.0	958

Table 4: Cumulative number of corrections and corresponding scores on CoNLL-2014 (test) w.r.t. number of iterations for our best single model.

GECToR - Grammatical Error Correction: Tag, Not Rewrite (Omelianchuk et al., BEA 2020)

Anatomy of a text-editing model



Reordering

Most text-editing apply their

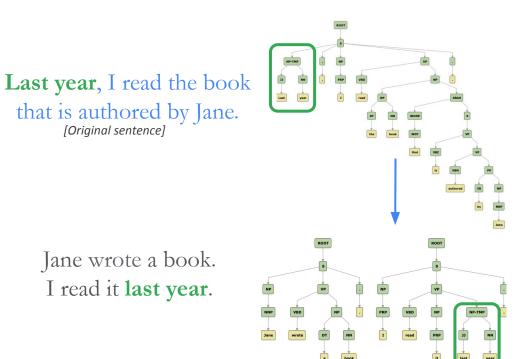
models left-to-right

Reordering allows us to model

- Large syntactic changes
- Local changes

Without the need to delete then

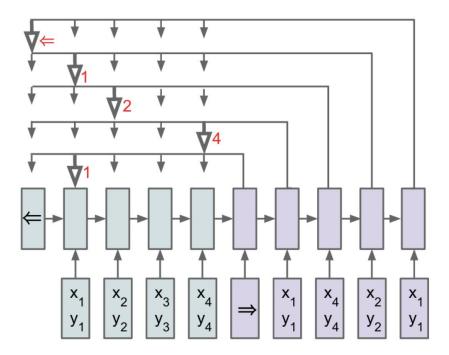
insert



AutoRegressive Reordering

Implemented using pointer network

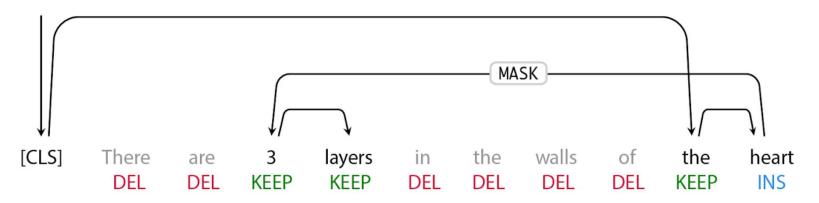
- When decoding use a cross-attention
- The source token with the highest attention is copied to the target
- Can copy the same source token multiple times



Source: Pointer networks paper (Vinyals et al., 2015).

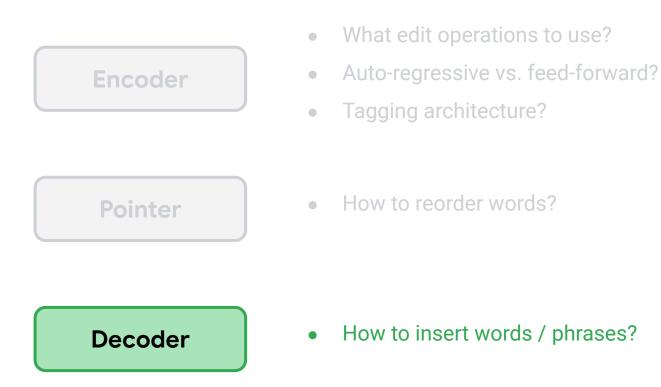
Non-AutoRegressive Reordering

- Self-attention pointer network which are daisy chained
 - Attention between encoder hidden states
 - Felix & EdiT5
- Can only copy each source token once



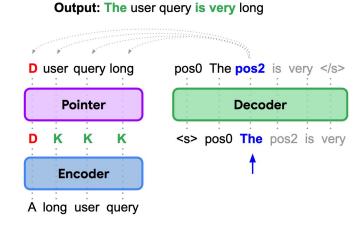
Source: Felix paper (Mallinson et al. 2020).

Anatomy of a text-editing model



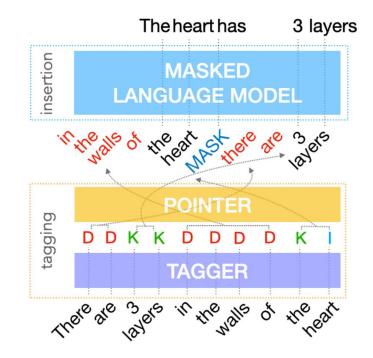
Separate Insertion Component

- Tagger predicts where to insert;
 a separate component what to insert
- Different insertion architectures
 - RNN (EditNTS)
 - BERT MLM (Felix, Masker)
 - Transformer decoder (Seq2Edits, EdiT5, LEWIS)



Source: EdiT5 paper (Mallinson et al. 2022).

- Idea 1: Separate insertion from tagging
 - Leverage pretrained BERT
- Idea 2: Predict word order using a pointer network



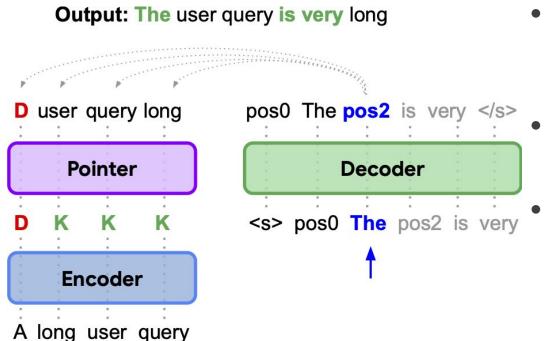
Source: Felix paper (Mallinson et al. 2020).

Insertion

- The output of the tagging model is the reordered input text with deleted words and MASK tokens
- The insertion model predict the content of MASK tokens
- Very similar to the **pretraining objective of BERT**

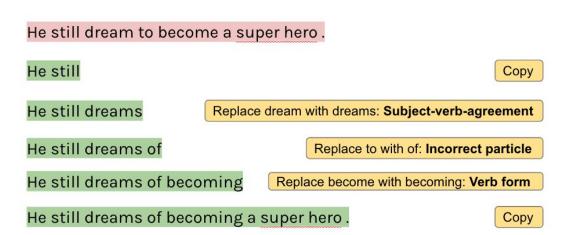
Source:	The	hearts	consist	of			layers
Tags: Insertion input: Prediction:	DEL [R] The [/R]	KEEP hearts hearts	KEEP consist consist	KEEP ^{INS_2} of of	MASK many	MASK different	KEEP layers layers

EdiT5



- Idea 1: Join insertion and tagging
 - Leverage pretrained T5 models
- Idea 2: Use autoregressive decoding on the small number of inserted tokens
- Decoder first predicts the location of the new text then decodes new tokens

Seq2Edits: A model that can rewrite and explain



Source: Seq2Edits paper (Stahlberg and Kumar, 2020).

- Contains 3 sub-models for predicting tags, span-end positions and replacement tokens
- The model is able to provide explanations for each edit operation
- By avoiding unnecessary copying of input spans, it is up to 5 times faster than a regular seq2seq model

Overview of Text-Editing Models

Method	Non-autore- gressive	Pre-trained decoder	Reorde- ring	Unsuper- vised	Language- agnostic	Application(s)
EdiT5 (Mallinson et al., 2022)	(√)	\checkmark	\checkmark		\checkmark	multiple
EditNTS (Dong et al., 2019)					\checkmark	Simplification
Felix (Mallinson et al., 2020)	\checkmark	\checkmark	\checkmark		\checkmark	multiple
GECToR (Omelianchuk et al., 2020)	\checkmark	(√)				GEC
LaserTagger (Malmi et al., 2019)	\checkmark				\checkmark	multiple
LevT (Gu et al., 2019)	(√)	\checkmark			\checkmark	multiple
LEWIS (Reid and Zhong, 2021)		\checkmark		\checkmark	\checkmark	Style Transfer
Masker (Malmi et al., 2020)	\checkmark	\checkmark		\checkmark	\checkmark	multiple
PIE (Awasthi et al., 2019)	\checkmark	\checkmark				GEC
Seq2Edits (Stahlberg and Kumar, 2020)					(√)	multiple
SL (Alva-Manchego et al., 2017)	\checkmark		\checkmark		\checkmark	Simplification

2-5. Converting target texts to target edits

There are multiple different ways that one sentence can be edited into another:

- Edit operation types (insert, delete, replace, append, prepend, reorder...)
- Token-level vs. span-level edits
- Tagged vs. untagged edits
- Alignment algorithm

Source: i like films when i was younger i watched on TV

Target: i like films i watched on television when i was younger

- We could delete everything and then use *insert* everything
- is TV a delete and insert after on? or singe a replace
- Do we want to reorder or delete everything after i like films?
- What should the i align to?

Questions?