
2. Model Design
Presenter: Eric, Jonathan

26

2-1. Example model: LaserTagger
(2019)

Malmi, Krause, Rothe, Mirylenka, Severyn. Encode, Tag, Realize: High-Precision Text Editing. EMNLP 2019 (pdf) 27

https://arxiv.org/pdf/1909.01187.pdf

High-Overlap Example: Sentence Fusion

Given two or more answers, fuse them into a

single coherent answer.
-- Example --

Query: [einstein birth and death]

Answers:

● Albert Einstein was born in 1879.

● Albert Einstein died in New Jersey.

● Albert Einstein died at the age of 76.

Fusion: Albert Einstein was born in 1879 and he died in New
Jersey at the age of 76.

28

Observation: High overlap between the answers and the fusions.

Fusion requires mainly:

● Deleting repeated phrases

● Adding short glue phrases

Solution: Predict edit operations instead of generating from scratch.

Sentence Fusion via Text Editing

29

LaserTagger

Malmi, Krause, Rothe, Mirylenka, Severyn. Encode, Tag, Realize: High-Precision Text Editing. EMNLP 2019 (pdf)
30

https://arxiv.org/pdf/1909.01187.pdf

● Convert training target texts into target tag sequences.
○ Tag = Base tag {KEEP, DELETE} + added phrase
○ Additionally: SWAP tag to reverse sentence order

● Phrase vocabulary: Set of phrases the model can add.
○ Counters hallucination
○ Optimized to cover as many training examples as

possible

● Tagging Model: BERT (+ 1-layer Transformer decoder)

LaserTagger: Key Ingredients

Source: Malmi et al. 2019 (pdf).

31

https://arxiv.org/pdf/1909.01187

1. Realized text is sometimes unnatural since we only pretrain the
encoder.

2. Limited phrase vocabulary can be too restrictive.

3. Reordering words is difficult.

LaserTagger’s Limitations

32

2-2. Model landscape

33

● What edit operations to use?

● Tagging architecture?

● Auto-regressive vs. feed-forward?

Anatomy of a text-editing model

Encoder

Pointer

Decoder

● How to reorder words?

● How to insert words / phrases?

34

● What edit operations to use?

● Auto-regressive vs. feed-forward?

● Tagging architecture?

Anatomy of a text-editing model

Encoder

Pointer

Decoder

● How to reorder words?

● How to insert words / phrases?

35

2-3. Edit-operation types

36

1. KEEP: Keeps the current token

2. DELETE: Deletes the current token

3. REPLACE: Replaces the current token

a. REPLACE_X: Replace with a specific token/phrase X

(e.g. LaserTagger, GECToR)

b. REPLACE: Replace with a placeholder and use a separate

insertion component to fill the blank (e.g. EditNTS, Felix, LEWIS)

4. APPEND / PREPEND: Inserts new token(s) next to the current token

Basic Edit-Operation Types

37

https://aclanthology.org/D19-1510/
https://aclanthology.org/2020.bea-1.16/
https://aclanthology.org/P19-1331/
https://aclanthology.org/2020.findings-emnlp.111/
https://aclanthology.org/2020.emnlp-main.699/

● Separate edit operation for each insertion x ∈ X

where X is a predefined set of possible insertions

○ REPLACE_the, REPLACE_a, etc.

● Pros

○ Counters hallucinations (more on this later)

● Cons

○ X can become very large when having to do

multi-word insertions

○ Hard to leverage pre-trained LMs to

determine a good insertion

REPLACE_X, APPEND_X, PREPEND_X

Source: LaserTagger paper (Malmi et al. 2019). 38

https://arxiv.org/pdf/1909.01187

● SWAP: Swap the order of this and the previous sentence

● PRONOMINALIZE: Replace this entity with a pronoun (look up gender

from a knowledge base)

● NOUN_NUMBER_SINGULAR: Convert noun to singular form

a. Other grammar-related edit operations discussed in the

Applications section

Other Edit-Operation Types

39

2-4. Tagging architecture +
auto-regressiveness

40

Types of Models

Autoregressive (AR)

● Condition on previous

predictions

● Seq2Seq

● Slow*

Non-Autoregressive (NAR)

● Predict simultaneously

● Feedforward NN

● More prone to errors

● Fast*

Two major types of models used for tagging

41

Case study: LaserTagger

LaserTagger supports AR and NAR version allowing for a direct

comparisons

● Across 4 tasks AR outperforms NAR

○ Up to 7% difference but as little as 1%

● At a 40x increase in latency (on GPU)

○ 13ms to 535ms

● Trade off between speed and performance

42

Non-AutoRegressive

Sequence labeling task

1. Encode source

2. For each token predict a label

a. Maximize gold tag probability in training

b. Argmax in prediction

Sequence
labeling

43

Non-AutoRegressive
1. Encode source sentence

a. Pre-trained NAR models

b. BERT: Felix, LaserTagger, GECToR

c. XLNet : GECToR

2. Predict the tags

a. Single layer Feedforward

b. Output size: 2 - 1000 tags

c. Each hidden state gets a single tag

Difficult to generate arbitrary outputs Source: Malmi et al. 2019 (pdf).

44

https://arxiv.org/pdf/1909.01187

Non-AutoRegressive Agreement

Source: "We have an apples"

NAR Prediction: "We have some apple"

AR Prediction: "We have an apple"
 "We have some apples"

NAR runs the risk of the edits not agreeing with each other NAR don't condition on past

edits

Agreement issues:

● Direction

● Grammar

● Subwords

NAR don't apply layers

multiple times

45

Auto-Regressive
● Encode source

● Decode edit-by-edit

○ Condition on previously decoded edit

● RNN/Transformer

○ Pre-trained AR

○ T5: EdiT5

○ BART: LEWIS

Generation

46

Iterative Refinement
● Apply the model to its own output

○ Each iteration increases

performance but adds latency

● Commonly used for GEC

● Can be used with any type of model

○ GECToR, PIE, Seq2Edits

GECToR – Grammatical Error Correction: Tag, Not Rewrite (Omelianchuk et al., BEA 2020)

47

https://aclanthology.org/2020.bea-1.16

● What edit operations to use?

● Auto-regressive vs. feed-forward?

● Tagging architecture?

Anatomy of a text-editing model

Encoder

Pointer

Decoder

● How to reorder words?

● How to insert words / phrases?

48

Reordering

Last year, I read the book
that is authored by Jane.

[Original sentence]

Jane wrote a book.
I read it last year.

Most text-editing apply their

models left-to-right

Reordering allows us to model

● Large syntactic changes

● Local changes

Without the need to delete then

insert

49

AutoRegressive Reordering
Implemented using pointer network

● When decoding use a cross-attention

● The source token with the highest

attention is copied to the target

● Can copy the same source token

multiple times

Source: Pointer networks paper (Vinyals et al., 2015).

50

https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf

Non-AutoRegressive Reordering
● Self-attention pointer network which are daisy chained

○ Attention between encoder hidden states

○ Felix & EdiT5

● Can only copy each source token once

Source: Felix paper (Mallinson et al. 2020).
51

● What edit operations to use?

● Auto-regressive vs. feed-forward?

● Tagging architecture?

Anatomy of a text-editing model

Encoder

Pointer

Decoder

● How to reorder words?

● How to insert words / phrases?

52

● Tagger predicts where to insert;

a separate component what to insert

● Different insertion architectures

○ RNN (EditNTS)

○ BERT MLM (Felix, Masker)

○ Transformer decoder (Seq2Edits, EdiT5,

LEWIS)

Separate Insertion Component

Source: EdiT5 paper (Mallinson et al. 2022).

53

● Idea 1: Separate insertion from tagging

○ Leverage pretrained BERT

● Idea 2: Predict word order using a pointer
network

Source: Felix paper (Mallinson et al. 2020).

Felix

54

● The output of the tagging model is the reordered input text
with deleted words and MASK tokens

● The insertion model predict the content of MASK tokens
●Very similar to the pretraining objective of BERT

Source: Felix paper (Mallinson et al. 2020).

Insertion

55

● Idea 1: Join insertion and
tagging
○ Leverage pretrained T5

models
● Idea 2: Use autoregressive

decoding on the small number
of inserted tokens

● Decoder first predicts the
location of the new text then
decodes new tokens

Source: EdiT5 paper (Mallinson et al. 2022).

EdiT5

56

Seq2Edits: A model that can rewrite and explain
● Contains 3 sub-models for

predicting tags, span-end
positions and replacement
tokens

● The model is able to provide
explanations for each edit
operation

● By avoiding unnecessary
copying of input spans, it is
up to 5 times faster than a
regular seq2seq modelSource: Seq2Edits paper (Stahlberg and Kumar, 2020).

57

Overview of Text-Editing Models

58

2-5. Converting target
texts to target edits

59

There are multiple different ways that one sentence can be edited into another:

● Edit operation types (insert, delete, replace, append, prepend, reorder…)

● Token-level vs. span-level edits

● Tagged vs. untagged edits

● Alignment algorithm

Edit types

60

Source: i like films when i was younger i watched on TV

Target: i like films i watched on television when i was younger

● We could delete everything and then use insert everything

● is TV a delete and insert after on? or singe a replace

● Do we want to reorder or delete everything after i like films?

● What should the i align to?

Example

61

Questions?

62

