4. Controllable Generation Presenter: Yue

Errors from Hallucinations

Hallucination: generate[d] text that is <u>nonsensical</u>, or <u>inconsistent</u> with the provided input

- Growing body of literature -- Here: taxonomy from Ji et al., 2022 (pdf)
- **Factuality:** Quality of a statement being true or based in a fact
- Variants of hallucinations:

generated text contradicts source text

VS.

generated text is not grounded in the source text

Errors from Hallucinations

Speaker	Utterance
	Why did Federer withdraw from the tournament?
*	He injured <mark>his back</mark> in yesterday's match.
	Did he have any other injuries?
	Did Roger Federer have any other injuries besides his leg?

Adapted from: Jin et al., Hierarchical Context Tagging for Utterance Rewriting, AAAI 2022 (pdf).

Causes of Hallucinations

- 1. Divergence of source texts and references in training data
- 2. **Memorized (factual) knowledge** in models with a really high parameter count (e.g., T5 11B)
- 3. In general, **model quality** issues

(from Ji et al., 2022 (pdf))

4-1. Mitigating hallucinations with restricted vocabularies

Advantages of Text Editing over Generation

Natural protections against hallucination

- A. Partial reuse of input tokens
- B. Insertion from a restricted + hotfixable vocabulary
- C. Supplemental edit operations for critical cases

A) Partial Reuse of Input Tokens

- Any reused token is one token not hallucinated
- Holds for text-editing models with unrestricted vocabulary or a seq2seq+copy model
- Statistic from a model for Utterance Rewriting:
 - In 75%+ of cases, the last user utterance is rewritten w/o adding new terms.
 - This is a great metric to monitor and set alerts on, e.g. to monitor for negative impact of the natural query distribution shift over time.

b) Insertion from a Restricted + Hotfixable Vocabulary

Error type	LASERTAGGER	SEQ2SEQ _{BERT}	Example
Imaginary words	not affected	affected	In: Zenica (Cyrillic: "Зеница") is Out: Zenica (Cyrillic: "gratulationеница") is
Repeated phrases	not affected	affected	In: I'm your employee, to serve on your company.Out: I'm your company, to serve on your company.
Premature end-of-sentence	less affected	affected	In: By the way, my favorite football team is Manchester United, they Out: By the way, my favorite football team is.
Hallucinations	less affected	affected	In: Tobacco smokers may also experience Out: anthropology smokers may also experience
Coreference issues	affected	affected	 In: She is the daughter of Alistair Crane who secretly built Out: She is the daughter of Alistair Crane (::::) She secretly built
Misleading rephrasing	affected	affected	In: postal service was in no way responsible Out: postal service was responsible
Lazy sentence splitting	affected	not affected	In: Home world of the Marglotta located in the Sagittarius Arm.Out: Home world of the Marglotta . (::::) Located in the Sagittarius Arm.

Table 7: Main error patterns observed in the output of the tagging and seq2seq models on their test sets (all tasks).

Malmi et al. Encode, Tag, Realize: High-Precision Text Editing. EMNLP 2019 (pdf)

b) Insertion from a Restricted + Hotfixable Vocabulary

- Some Text Editing models have restricted vocabularies
 - \rightarrow Easy to remove vocabulary elements in the case of observed losses.
- Made-up loss example: Spurious correlations in training data. Easy to hotfix by modifying the inference-time vocabulary.

[how old is **the President**] [does **he** have a partner] \rightarrow [Does **Barack Obama** have a partner]

[how old is **the President of France**] [does **he** have a partner] \rightarrow [Does **Barack Obama** have a partner]

[who is the richest person in the world] [how did **he** get rich] \rightarrow [How did **Barack Obama** get rich?]

c) Supplemental Edit Operations for Critical Cases

Bias in NLG is an Active Research Area

Demo. Dim.	NLG Task	Works
Gender Autocomplete		Bordia and Bowman (2019); Qian et al. (2019); Solaiman et al. (2019); Sheng et al. (2019, 2020); Vig et al. (2020); Yeo and Chen (2020); Brown et al. (2020); Dhamala et al. (2021); Schick et al. (2021); Nozza et al. (2021); Kirk et al. (2021)
	Dialogue	Henderson et al. (2018); Dinan et al. (2020a); Liu et al. (2020a,b); Cercas Curry et al. (2020); Sheng et al. (2021a,b)
	MT Re-writing	Vanmassenhove et al. (2018); Elaraby et al. (2018); Prates et al. (2019); Stanovsky et al. (2019); Escudé Font and Costa-jussà (2019); Cho et al. (2019); Moryossef et al. (2019); Saunders and Byrne (2020); Saunders et al. (2020); Kocmi et al. (2020); Costa-jussà and de Jorge (2020); Costa-jussà et al. (2020); Basta et al. (2020); Farkas and Németh (2020); Stafanovičs et al. (2020); Gonen and Webster (2020); Hovy et al. (2020); Cho et al. (2021); Savoldi et al. (2021); Renduchintala and Williams (2021); Choubey et al. (2021); Saunders et al. (2021); Tomalin et al. (2021) Habash et al. (2019); Zmigrod et al. (2019); Alhafni et al. (2020); Sun et al. (2021)
Profession	Autocomplete	Huang et al. (2020); Dhamala et al. (2021)
Race	Autocomplete Dialogue	Solaiman et al. (2019); Sheng et al. (2019, 2020); Groenwold et al. (2020); Brown et al. (2020); Dhamala et al. (2021); Schick et al. (2021); Kirk et al. (2021) Sheng et al. (2021a,b)
Religion	Autocomplete	Solaiman et al. (2019); Brown et al. (2020); Dhamala et al. (2021); Kirk et al. (2021); Abid et al. (2021)
Sexuality	Autocomplete Dialogue	Sheng et al. (2019, 2020); Kirk et al. (2021) Sheng et al. (2021a)
Other	Autocomplete	Shwartz et al. (2020); Peng et al. (2020); Huang et al. (2020); Dhamala et al. (2021); Kirk et al. (2021)
	Dialogue Re-writing	Sheng et al. (2021a) Pryzant et al. (2020); Ma et al. (2020)

Table 1: Existing bias studies on different demographic dimensions in various NLG tasks: autocomplete generation, dialogue generation, machine translation (MT), and text re-writing.

c) Supplemental Edit Operations for Critical Cases

Bias in Pronominalization

Figure 3: DFWIKI outputs versus the gold pronouns. Rows refer to gold pronouns and columns refer to aligned model outputs at the gold pronoun position.

Geva et al. DiscoFuse: A Large-Scale Dataset for Discourse-Based Sentence Fusion. NAACL 2019 (pdf)

Fig: Leveraging external knowledge to select the appropriate pronoun with LaserTagger.

c) Supplemental Edit Operations for Critical Cases

Bias in Pronominalization

aligned model outputs at the gold pronoun position.

Geva et al. DiscoFuse: A Large-Scale Dataset for

Discourse-Based Sentence Fusion. NAACL 2019 (pdf)

Fig: Leveraging external knowledge to select the appropriate pronoun with LaserTagger.

4-2. Biasing the edit types

Controlled Generation

Assigning bias/weights for each edit type results in different model behavior

- Confidence bias for KEEP (<u>Omelianchuk et al., 2020</u>)
 - Added to the probability of **KEEP** tag for not changing the source token
- Threshold values and relative weights (Kumar et al., 2020)
 - Added to control when to perform edit
- Edit label ratio (Dong et al., 2019)
 - Added to control the ratio for each edit operation

Reward **ADD**:

- Long output
- More novel words

Reward **KEEP**:

• More copy

Reward **DELETE**:

• Short output

o <u>Dong et al., 2019</u>

Reward **ADD**:

- Long output
- More novel words

Reward **KEEP**:

More copy

Reward **DELETE**:

• Short output

Reward **ADD**:

- Long output
- More novel words

Reward **KEEP**:

• More copy

Reward **DELETE**:

• Short output

4-3. Controllable dataset generation

Tagged corruption models for synthetic GEC training data generation

• Applying back-translation to grammatical error correction does not always

generate realistic data

- Not enough diversity
- Tendency to synthesize only trivial errors
- Can we use error type tags (<u>Bryant et al., 2017</u>) to generate more diverse and

more realistic grammatical errors? (Stahlberg and Kumar, 2021)

Error type:	NOUN:INFL	
Sentence:	There were a lot of sheep.	1

Tagged corruption model

There were a lot of sheeps.

Tagged corruption models

Option 1: Train on tagged source sentences (full sequence and edit-based models)

NOUN:INFL There were a lot of sheep.	There were a lot of sheeps.		
DET There were a lot of sheep.	There were lot of sheep.		
PART There were a lot of sheep.	There were a lot off sheep.		

Option 2: Finite state transducer constraints (tagged edit-based models only)

Full sequence vs. edit-based corruption models for GEC

Corruption model type		Correction F0.5 score	
	Untagged	Tagged (FST constraint)	Tagged (input)
Full sequence	42.4	-	38.8
Seq2Edits	40.4	46.2	46.3

Tagged edit-based corruption models outperform tagged full sequence corruption models (<u>Stahlberg and Kumar, 2021</u>).

Tagged corruption models in fine-tuning

System	Test set (F0.5)			
	CEFR-A	CEFR-B	CEFR-C	Native
Real data	<u>50.3</u>	<u>51.5</u>	<u>44.1</u>	42.1
Tagged corruptions ~ CEFR-A	47.4	46.2	39.0	39.0
Tagged corruptions ~ CEFR-B	47.1	46.0	40.9	38.0
Tagged corruptions ~ CEFR-C	47.1	46.2	37.1	39.1
Tagged corruptions ~ Native	47.8	49.2	42.8	<u>42.9</u>

Matching the tag distribution improves GEC performance for native speakers.

Tagged corruption models in pre-training (C4_200M)

Tag distribution	BEA-dev	CoNLL-13	JFLEG-dev
P*()	F0.5	F0.5	GLEU
None (no tags)	51.4	47.9	57.1
BEA-dev	54.7	51.9	58.5
CoNLL-13	53.9	50.8	58.1
JFLEG-dev	53.8	50.9	58.4
Uniform	54.5	51.1	58.3

The BEA-dev distribution generalizes well to other test sets The Uniform distribution is also a good choice

200M synthetic GEC training set (C4_200M) available here:

https://github.com/google-research-datasets/C4_200M-synthetic-dataset-for-grammatical-error-correction28

Questions?