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5-1. Tokenization
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● Token = the smallest unit of text fed to your model

● Unglamorous but of great practical importance!

○ If you notice your tokenization is bad, you may need to re-run both pre-training and fine-tuning

○ Particularly important for text generation models and for internationalization
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● Token = the smallest unit of text fed to your model

● Unglamorous but of great practical importance!

○ If you notice your tokenization is bad, you may need to re-run both pre-training and fine-tuning

○ Particularly important for text generation models and for internationalization

● Different levels of tokenization

○ words                   used in the LaserTagger paper

○ subwords            used in the Felix and Edit5 papers

○ morphemes

○ characters/bytes

Tokenization
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Words Characters

Untokenized text. ⇒ 
[“Untokenized”, “text”, “.”]

“Untokenized text.” ⇒ 
[“U”, “n”, “t”, “o”, “k”, “e”, 
“n”, “i”, “z”, “e”, “d”, “ “, 
“t”, “e”, “x”, “t”, “.”]

Tokenization Trade-Offs (Text Editing)
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Words Characters

● Poorly handles morphology ● NAR decoding can produce nonsense
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Words Characters

● UNK tokens

● Large vocabulary

● Big embedding matrix

● Many rare words

● Long-sequences => lower quality

● Slow training and inference

● Non-meaningful units (especially for 

non-ASCII alphabets)
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Words Characters

● UNK tokens

● Large vocabulary

● Big embedding matrix

● Many rare words

● Long-sequences => lower quality

● Slow training and inference

● Non-meaningful units (especially for 

non-ASCII alphabets)

e.g., ByT5 [Xue et al. 2021], Charformer [Tay et al. 2021]: seq2seq; 
HCTagger [Gao, Xu, and Shi 2021] 

Untokenized text. ⇒ 
[“Untokenized”, “text”, “.”]

“Untokenized text.” ⇒ 
[“U”, “n”, “t”, “o”, “k”, “e”, 
“n”, “i”, “z”, “e”, “d”, “ “, 
“t”, “e”, “x”, “t”, “.”]

Tokenization Trade-Offs
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https://arxiv.org/pdf/2105.13626
https://arxiv.org/pdf/2106.12672
https://aclanthology.org/2021.wnut-1.13.pdf


● Different algorithms for optimizing the segmentation:

BPE, UnigramLM, WordPiece

● Most are reversible: text == detokenize(tokenize(text))

○ Original BERT’s WordPiece is not → bad for NLG

● Typical vocabulary size: 30k–250k

Untokenized text. ⇒ [“▁Un”, “token”, “ized”, “▁text”, “.”]

Subword Segmentation
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Mielke et al. Between words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP. arXiv 2021 (pdf)

Tokenizers Landscape
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https://arxiv.org/pdf/2112.10508.pdf


Latin (ASCII)
~94 characters

Korean
~11'000 characters in UTF-8Cyrillic

~200 characters

Different  Alphabets and Scripts
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UNKnown Tokens

1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "생", 

we'll prefer it in the vocabulary
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UNKnown Tokens

1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "생", 

we'll prefer it in the vocabulary

2. Now, how do we encode "sensei"?

○ We probably have other letters

○ so something like ["sen", "s", "e", "i"]

3. But what about "선생"?

○ ["선", "UNK"]

4. Solution: fallback to bytes

○ ["선",  236, 131, 157]
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5-2. Handling Morphology
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Grammatical Error Correction (GEC) example:

Editing Morphology

Source: "She no drives to market."

Target: "She did no not drives drive to market."

Depending on tokenization, potentially inefficient drives->drive replacement
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Similar to PRONOMINALIZE tag in 
sentence fusion, we can introduce a 
$VERB_FORM_VBZ_VB tag:

● drives -> drive
● goes -> go
● carries -> carry

Morphological Operations

Omelianchuk et al., 2020 (pdf)
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https://arxiv.org/pdf/2005.12592.pdf


Idea: instead of learning a vocabulary of word 
replacement, learn vocabulary of character replacements

Learned Edit Operations
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Idea: instead of learning a vocabulary of word 
replacement, learn vocabulary of character replacements

Learned Edit Operations

KEEP

APPEND a
APPEND b
........
APPEND z

REPL. 1st → ∅
REPL. 1st → a
REPL. 1st → b
....
REPL. 2nd → ∅
REPL. 2nd → a
....
REPL. 5th → ∅

UPPERCASE 1st 
....
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Idea: instead of learning a vocabulary of word 
replacement, learn vocabulary of character replacements

Learned Edit Operations

Straka et al., 2021 (pdf)

Source:    gatherin           leafes
   ["_gathe", "rin",  "_lea", "fes"]

Target:    Gathering           leaves
Tags:   [UPP.2nd   , APP.g,  KEEP  , REPL.1st → v]
Realize: ["_Gathe", "ring", "_lea", "ves"]

KEEP

APPEND a
APPEND b
........
APPEND z

REPL. 1st → ∅
REPL. 1st → a
REPL. 1st → b
....
REPL. 2nd → ∅
REPL. 2nd → a
....
REPL. 5th → ∅

UPPERCASE 1st 
....
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https://aclanthology.org/2021.wnut-1.46.pdf


5-3. Practical Aspects of 
Multilingual Models
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Per-Language Model (vs. Multilingual)

+ better alphabet => relying less on byte 

fallback (e.g., KR-BERT, RuBERT)

+ smaller model
+ independent release cycle

+  cross-lingual learning

+  simpler training

+  lower maintenance costs 

+ lower complexity

+ lower resource (TPU/RAM) footprint

Per-language Multilingual
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https://github.com/snunlp/KR-BERT
http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html


Per-Language Edit Operations

A change to introduce a separate softmax layer for LaserTagger per 
language. TPU Inference time (scale)
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Encoder Vocabulary & Tokenization

One size does not fit all:

● Bigger [SentencePiece] vocabulary => smaller sequence 

length => faster encoding

● ... but it can make the source/target alignment harder

● ... and it makes the model bigger

● ... and languages need to be properly balanced

Rachel Claire on pexels.com (link)

See Chung et al. (2020) [pdf] on how to merge vocabularies
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https://www.pexels.com/photo/helmets-on-wooden-shelves-on-street-5490216/
http://go/arxiv/2010.12777


Questions?
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