
5. Multilingual
Text-Editing
Presenter: Eric

130

5-1. Tokenization

131

● Token = the smallest unit of text fed to your model

● Unglamorous but of great practical importance!

○ If you notice your tokenization is bad, you may need to re-run both pre-training and fine-tuning

○ Particularly important for text generation models and for internationalization

Tokenization

132

● Token = the smallest unit of text fed to your model

● Unglamorous but of great practical importance!

○ If you notice your tokenization is bad, you may need to re-run both pre-training and fine-tuning

○ Particularly important for text generation models and for internationalization

● Different levels of tokenization

○ words

○ subwords

○ morphemes

○ characters/bytes

Tokenization

133

● Token = the smallest unit of text fed to your model

● Unglamorous but of great practical importance!

○ If you notice your tokenization is bad, you may need to re-run both pre-training and fine-tuning

○ Particularly important for text generation models and for internationalization

● Different levels of tokenization

○ words used in the LaserTagger paper

○ subwords used in the Felix and Edit5 papers

○ morphemes

○ characters/bytes

Tokenization

134

Words Characters

Untokenized text. ⇒
[“Untokenized”, “text”, “.”]

“Untokenized text.” ⇒
[“U”, “n”, “t”, “o”, “k”, “e”,
“n”, “i”, “z”, “e”, “d”, “ “,
“t”, “e”, “x”, “t”, “.”]

Tokenization Trade-Offs (Text Editing)

135

Words Characters

● Poorly handles morphology ● NAR decoding can produce nonsense

Untokenized text. ⇒
[“Untokenized”, “text”, “.”]

“Untokenized text.” ⇒
[“U”, “n”, “t”, “o”, “k”, “e”,
“n”, “i”, “z”, “e”, “d”, “ “,
“t”, “e”, “x”, “t”, “.”]

Tokenization Trade-Offs (Text Editing)

136

Words Characters

● UNK tokens

● Large vocabulary

● Big embedding matrix

● Many rare words

● Long-sequences => lower quality

● Slow training and inference

● Non-meaningful units (especially for

non-ASCII alphabets)

Untokenized text. ⇒
[“Untokenized”, “text”, “.”]

“Untokenized text.” ⇒
[“U”, “n”, “t”, “o”, “k”, “e”,
“n”, “i”, “z”, “e”, “d”, “ “,
“t”, “e”, “x”, “t”, “.”]

Tokenization Trade-Offs

137

Words Characters

● UNK tokens

● Large vocabulary

● Big embedding matrix

● Many rare words

● Long-sequences => lower quality

● Slow training and inference

● Non-meaningful units (especially for

non-ASCII alphabets)

e.g., ByT5 [Xue et al. 2021], Charformer [Tay et al. 2021]: seq2seq;
HCTagger [Gao, Xu, and Shi 2021]

Untokenized text. ⇒
[“Untokenized”, “text”, “.”]

“Untokenized text.” ⇒
[“U”, “n”, “t”, “o”, “k”, “e”,
“n”, “i”, “z”, “e”, “d”, “ “,
“t”, “e”, “x”, “t”, “.”]

Tokenization Trade-Offs

138

https://arxiv.org/pdf/2105.13626
https://arxiv.org/pdf/2106.12672
https://aclanthology.org/2021.wnut-1.13.pdf

● Different algorithms for optimizing the segmentation:

BPE, UnigramLM, WordPiece

● Most are reversible: text == detokenize(tokenize(text))

○ Original BERT’s WordPiece is not → bad for NLG

● Typical vocabulary size: 30k–250k

Untokenized text. ⇒ [“▁Un”, “token”, “ized”, “▁text”, “.”]

Subword Segmentation

139

Mielke et al. Between words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP. arXiv 2021 (pdf)

Tokenizers Landscape

140

https://arxiv.org/pdf/2112.10508.pdf

Latin (ASCII)
~94 characters

Korean
~11'000 characters in UTF-8Cyrillic

~200 characters

Different Alphabets and Scripts

141

UNKnown Tokens

1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "생",

we'll prefer it in the vocabulary

142

UNKnown Tokens

1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "생",

we'll prefer it in the vocabulary

2. Now, how do we encode "sensei"?

143

UNKnown Tokens

1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "생",

we'll prefer it in the vocabulary

2. Now, how do we encode "sensei"?

○ We probably have other letters

○ so something like ["sen", "s", "e", "i"]

144

UNKnown Tokens

1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "생",

we'll prefer it in the vocabulary

2. Now, how do we encode "sensei"?

○ We probably have other letters

○ so something like ["sen", "s", "e", "i"]

3. But what about "선생"?

○ ["선", "UNK"]

145

UNKnown Tokens

1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "생",

we'll prefer it in the vocabulary

2. Now, how do we encode "sensei"?

○ We probably have other letters

○ so something like ["sen", "s", "e", "i"]

3. But what about "선생"?

○ ["선", "UNK"]

4. Solution: fallback to bytes

○ ["선", 236, 131, 157]

146

5-2. Handling Morphology

147

Grammatical Error Correction (GEC) example:

Editing Morphology

Source: "She no drives to market."

Target: "She did no not drives drive to market."

Depending on tokenization, potentially inefficient drives->drive replacement

148

Similar to PRONOMINALIZE tag in
sentence fusion, we can introduce a
$VERB_FORM_VBZ_VB tag:

● drives -> drive
● goes -> go
● carries -> carry

Morphological Operations

Omelianchuk et al., 2020 (pdf)

149

https://arxiv.org/pdf/2005.12592.pdf

Idea: instead of learning a vocabulary of word
replacement, learn vocabulary of character replacements

Learned Edit Operations

150

Idea: instead of learning a vocabulary of word
replacement, learn vocabulary of character replacements

Learned Edit Operations

KEEP

APPEND a
APPEND b
........
APPEND z

REPL. 1st → ∅
REPL. 1st → a
REPL. 1st → b
....
REPL. 2nd → ∅
REPL. 2nd → a
....
REPL. 5th → ∅

UPPERCASE 1st
....

151

Idea: instead of learning a vocabulary of word
replacement, learn vocabulary of character replacements

Learned Edit Operations

Straka et al., 2021 (pdf)

Source: gatherin leafes
 ["_gathe", "rin", "_lea", "fes"]

Target: Gathering leaves
Tags: [UPP.2nd , APP.g, KEEP , REPL.1st → v]
Realize: ["_Gathe", "ring", "_lea", "ves"]

KEEP

APPEND a
APPEND b
........
APPEND z

REPL. 1st → ∅
REPL. 1st → a
REPL. 1st → b
....
REPL. 2nd → ∅
REPL. 2nd → a
....
REPL. 5th → ∅

UPPERCASE 1st
....

152

https://aclanthology.org/2021.wnut-1.46.pdf

5-3. Practical Aspects of
Multilingual Models

153

Per-Language Model (vs. Multilingual)

+ better alphabet => relying less on byte

fallback (e.g., KR-BERT, RuBERT)

+ smaller model
+ independent release cycle

+ cross-lingual learning

+ simpler training

+ lower maintenance costs

+ lower complexity

+ lower resource (TPU/RAM) footprint

Per-language Multilingual

154

https://github.com/snunlp/KR-BERT
http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html

Per-Language Edit Operations

A change to introduce a separate softmax layer for LaserTagger per
language. TPU Inference time (scale)

155

Encoder Vocabulary & Tokenization

One size does not fit all:

● Bigger [SentencePiece] vocabulary => smaller sequence

length => faster encoding

● ... but it can make the source/target alignment harder

● ... and it makes the model bigger

● ... and languages need to be properly balanced

Rachel Claire on pexels.com (link)

See Chung et al. (2020) [pdf] on how to merge vocabularies

156

https://www.pexels.com/photo/helmets-on-wooden-shelves-on-street-5490216/
http://go/arxiv/2010.12777

Questions?

157

