5. Multilingual Text-Editing Presenter: Eric

5-1. Tokenization

Tokenization

- Token = the smallest unit of text fed to your model
- Unglamorous but of great **practical importance**!
 - If you notice your tokenization is bad, you may need to re-run both pre-training and fine-tuning
 - Particularly important for text **generation** models and for **internationalization**

Tokenization

- Token = the smallest unit of text fed to your model
- Unglamorous but of great practical importance!
 - If you notice your tokenization is bad, you may need to re-run both pre-training and fine-tuning
 - Particularly important for text **generation** models and for **internationalization**
- Different levels of tokenization
 - \circ words
 - \circ subwords
 - morphemes
 - characters/bytes

Tokenization

- Token = the smallest unit of text fed to your model
- Unglamorous but of great practical importance!
 - If you notice your tokenization is bad, you may need to re-run both pre-training and fine-tuning
 - Particularly important for text **generation** models and for **internationalization**
- Different levels of tokenization
 - words used in the LaserTagger paper
 - subwords used in the Felix and Edit5 papers
 - morphemes
 - characters/bytes

Tokenization Trade-Offs (Text Editing)

Words

Untokenized text. ⇒
["Untokenized", "text", "."]

Characters

"Untokenized text." ⇒
["U", "n", "t", "o", "k", "e",
"n", "i", "z", "e", "d", "",
"t", "e", "x", "t", "."]

Tokenization Trade-Offs (Text Editing)

Words

Untokenized text. ⇒
["Untokenized", "text", "."]

• Poorly handles morphology

Characters

"Untokenized text." ⇒
["U", "n", "t", "o", "k", "e",
"n", "i", "z", "e", "d", "",
"t", "e", "x", "t", "."]

• NAR decoding can produce nonsense

Tokenization Trade-Offs

Words

Untokenized text. ⇒
["Untokenized", "text", "."]

- UNK tokens
- Large vocabulary
- Big embedding matrix
- Many rare words

Characters

"Untokenized text." \Rightarrow	
["U", "n", "t", "o", "	<", " <mark>e</mark> ",
"n", "i", "z", "e", "d'	, , , , , , , , , , , , , , , , , , ,
"t", "e", "x", "t", ".'	']

- Long-sequences => lower quality
- Slow training and inference
- Non-meaningful units (especially for non-ASCII alphabets)

Tokenization Trade-Offs

Words

Untokenized text. ⇒
["Untokenized", "text", "."]

- UNK tokens
- Large vocabulary
- Big embedding matrix
- Many rare words

Characters

"Untokenized text." \Rightarrow	
["U", "n", "t", "o", "k",	"e",
"n", "i", "z", "e", "d",	и и ,
"t", "e", "x", "t", "."]	

- Long-sequences => lower quality
- Slow training and inference
- Non-meaningful units (especially for non-ASCII alphabets)

e.g., ByT5 [Xue et al. 2021], Charformer [Tay et al. 2021]: seq2seq; HCTagger [Gao, Xu, and Shi 2021]

Subword Segmentation

Untokenized text. ⇒ ["_Un", "token", "ized", "_text", "."]

• Different algorithms for optimizing the segmentation:

BPE, UnigramLM, WordPiece

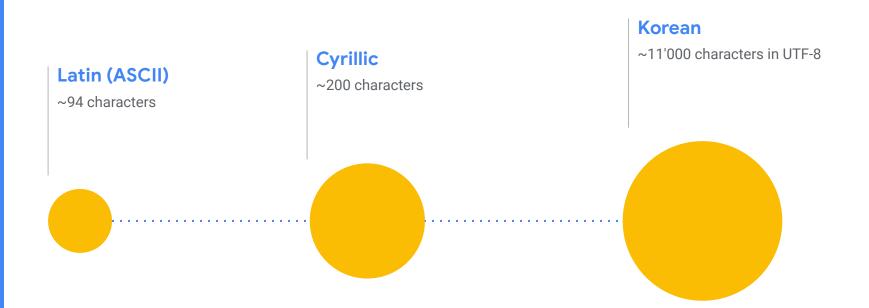
- Most are reversible: text == detokenize(tokenize(text))
 - \circ Original BERT's WordPiece is not \rightarrow bad for NLG
- Typical vocabulary size: 30k-250k

Tokenizers Landscape

requiring linguistic knowledge	data-driven / learned complex models simple		decompose maximally
/ based on linguistic concepts	hierarchical or segmental neural LMs	SentencePiece impl. of BPE & Unigram LM	Characters Bytes Rendered Pixels
Manually created morphl. analyzers	Linguistica Morfessor	orig. BPE, WP & Unigram LM	assumes words are provided
Pretokenizers like Moses' tokenize.pl	Bayesian Nonparam. for word acquisition	space- or punctuation- splitting	claims to find words

Figure 1: A taxonomy of segmentation and tokenization algorithms and research directions

Different Alphabets and Scripts



 Subword algorithm is greedy: if "dog" is more frequently than "sei" or "∛", we'll prefer it in the vocabulary

- 1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "생", we'll prefer it in the vocabulary
- 2. Now, how do we encode "sensei"?

- 1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "생", we'll prefer it in the vocabulary
- 2. Now, how do we encode "sensei"?
 - We probably have other letters
 - so something like ["sen", "s", "e", "i"]

- 1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "생", we'll prefer it in the vocabulary
- 2. Now, how do we encode "sensei"?
 - We probably have other letters
 - so something like ["sen", "s", "e", "i"]
- 3. But what about "선생"?
 - ["천", "UNK"]

- 1. Subword algorithm is greedy: if "dog" is more frequently than "sei" or "생", we'll prefer it in the vocabulary
- 2. Now, how do we encode "sensei"?
 - We probably have other letters
 - so something like ["sen", "s", "e", "i"]
- 3. But what about "선생"?
 - ["천", "UNK"]
- 4. Solution: fallback to bytes
 - ["선", 236, 131, 157]

5-2. Handling Morphology

Editing Morphology

Grammatical Error Correction (GEC) example:

Source: "She no drives to market."

Target: "She did no not drives drive to market."

Depending on tokenization, potentially inefficient drives->drive replacement

Morphological Operations

Similar to PRONOMINALIZE tag in sentence fusion, we can introduce a \$VERB_FORM_VBZ_VB tag:

- drives -> drive
- go<u>es</u> -> go
- carries -> carry

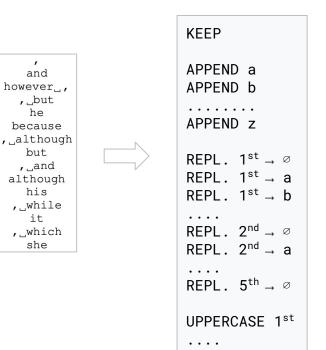
Tag	Example
\$KEEP	many people want to travel during the summer
\$DELETE	not sure if you are $\{you \Rightarrow \emptyset\}$ gifting
\$REPLACE_a	\dots the bride wears $\{\mathbf{the} \Rightarrow \mathbf{a}\}$ white dress \dots
\$REPLACE_cause	hope it does not {make \Rightarrow cause} any trouble
\$APPEND_for	he is {waiting \Rightarrow waiting for} your reply
φi ii i bi ib lioi	
\$APPEND_know	\dots I {don't \Rightarrow don't know} which to choose
\$CASE_CAPITAL	\dots surveillance is on the {internet \Rightarrow Internet} \dots
\$CASE_CAPITAL_1	I want to buy an {iphone \Rightarrow iPhone}
\$CASE_LOWER	\dots advancement in {Medical \Rightarrow medical} technology \dots
\$CASE_UPPER	the $\{it \Rightarrow IT\}$ department is concerned that
\$MERGE_SPACE	\dots insert a special kind of gene {in to \Rightarrow into} the cell \dots
\$MERGE_HYPHEN	\dots and needs {in depth \Rightarrow in-depth} search \dots
\$SPLIT_HYPHEN	\dots support us for a {long-run \Rightarrow long run} \dots
\$NOUN_NUMBER_SINGULAR	\dots a place to live for their {citizen \Rightarrow citizens}
\$NOUN_NUMBER_PLURAL	\ldots carrier of this {diseases \Rightarrow disease} \ldots
\$VERB_FORM_VB_VBZ	\ldots going through this $\{make \Rightarrow makes\}$ me feel \ldots
\$VERB_FORM_VB_VBN	\dots to discuss what {happen \Rightarrow happened} in fall \dots
\$VERB_FORM_VB_VBD	\dots she sighed and $\{\mathbf{draw} \Rightarrow \mathbf{drew}\}$ her \dots
\$VERB_FORM_VB_VBG	\dots shown success in { prevent \Rightarrow preventing } such \dots
\$VERB_FORM_VB_VBZ	\dots a small percentage of people $\{\mathbf{goes} \Rightarrow \mathbf{go}\}$ by bike \dots
\$VERB_FORM_VBZ_VBN	\dots development has {pushes \Rightarrow pushed} countries to \dots
\$VERB_FORM_VBZ_VBD	\dots he {drinks \Rightarrow drank} a lot of beer last night \dots
\$VERB_FORM_VBZ_VBG	\dots couldn't stop { thinks \Rightarrow thinking } about it \dots
\$VERB_FORM_VBN_VB	\dots going to {depended \Rightarrow depend} on who is hiring \dots
\$VERB_FORM_VBN_VBZ	\dots yet he goes and {eaten \Rightarrow eats} more melons \dots
\$VERB_FORM_VBN_VBD	he {driven \Rightarrow drove} to the bus stop and
\$VERB_FORM_VBN_VBG	\dots don't want you fainting and { broken \Rightarrow breaking } \dots
\$VERB_FORM_VBD_VB	each of these items will $\{\mathbf{fell} \Rightarrow \mathbf{fall}\}$ in price
\$VERB_FORM_VBD_VBZ	the lake {froze \Rightarrow freezes} every year
\$VERB_FORM_VBD_VBN	he has been went {went \Rightarrow gone} since last week
\$VERB_FORM_VBD_VBG	talked her into {gave \Rightarrow giving} me the whole day
\$VERB_FORM_VBG_VB	free time, I just {enjoying \Rightarrow enjoy} being outdoors
\$VERB_FORM_VBG_VBZ	there still {existing \Rightarrow exists} many inevitable factors
\$VERB_FORM_VBG_VBN	people are afraid of being $\{$ tracking \Rightarrow tracked $\}$
\$VERB_FORM_VBG_VBD	there was no $\{$ mistook \Rightarrow mistaking $\}$ his sincerity

Learned Edit Operations

Idea: instead of learning a vocabulary of **word** replacement, learn vocabulary of **character** replacements

Learned Edit Operations

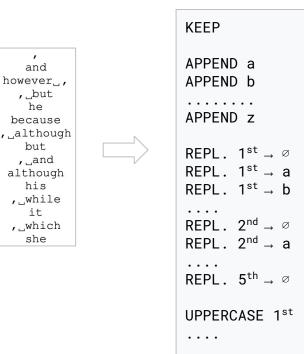
Idea: instead of learning a vocabulary of **word** replacement, learn vocabulary of **character** replacements



Learned Edit Operations

Idea: instead of learning a vocabulary of **word** replacement, learn vocabulary of **character** replacements

Source: gatherin leafes
 ["_gathe", "rin", "_lea", "fes"]
Target: Gathering leaves
Tags: [UPP.2nd , APP.g, KEEP , REPL.1st → v]
Realize: ["_Gathe", "ring", "_lea", "ves"]



Straka et al., 2021 (pdf)

5-3. Practical Aspects of Multilingual Models

Per-Language Model (vs. Multilingual)

Per-language

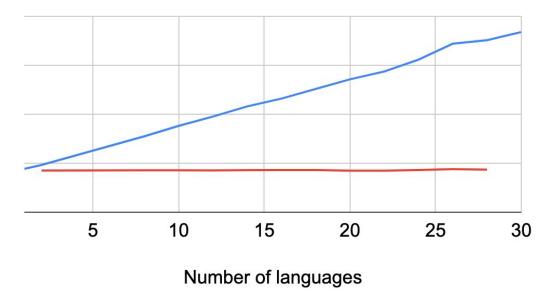
- + better alphabet => relying less on byte
- fallback (e.g., KR-BERT, RuBERT)
- + smaller model
- + independent release cycle

Multilingual

- + cross-lingual learning
- + simpler training
- + lower maintenance costs
 - + lower complexity
 - + lower resource (TPU/RAM) footprint

Per-Language Edit Operations

without change
 with change



A change to introduce a separate softmax layer for LaserTagger per language. TPU Inference time (scale)

Encoder Vocabulary & Tokenization

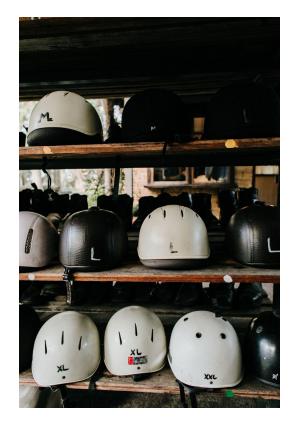
One size does not fit all:

• Bigger [SentencePiece] vocabulary => smaller sequence

length => faster encoding

- ... but it can make the source/target alignment harder
- ... and it makes the model bigger
- ... and languages need to be properly balanced

See Chung et al. (2020) [pdf] on how to merge vocabularies



Questions?